Activation of Stat1 and subsequent transcription of inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-γ-induced MAPK activation that is mediated by p21(ras)

T. Nishiya, Takashi Uehara, H. Edamatsu, Y. Kaziro, H. Itoh, Y. Nomura

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

Rat C6 glioma cells have been used to characterize molecular events involved in the regulation of inducible nitric oxide synthase (iNOS) gene expression stimulated by interferon-γ (IFN-γ) plus lipopolysaccharide (LPS), IFNs induce a signaling event which involves activation of Stat1 transcription factor. Previous studies have shown that IFNs also induce extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) activation. However, the mechanisms by which IFNs stimulate MAPK activation remain elusive. Here we show that in C6 glioma cells, transiently expressing the dominant-negative form of c-Ha-Ras (Asn-17) abrogated IFN-γ-induced ERK1 and ERK2 activation. Furthermore, PD98059, a specific MEK1 inhibitor, also blocked this activation. These results indicate that p21(ras) and MEK1 are required for IFN-γ-induced ERK1 and ERK2 activation. Recent studies have reported that MAPK is responsible for serine phosphorylation of Stat1 which is required for Stat1's DNA binding and maximal transcriptional activity. Thus, we examined the role of the Ras-MAPK pathway in Stat1 activation and subsequent iNOS induction in C6 glioma cells. Further experiments showed that neither Asn-17 Ras expression nor concentrations of PD98059, which completely abrogated IFN-γ-induced ERK1 and ERK2 activation, affected Stat1 DNA binding activity or iNOS induction, indicating that the Ras-MAPK pathway does not appear to be involved in the activation of Stat1 and subsequent iNOS induction in C6 glioma cells.

Original languageEnglish
Pages (from-to)33-38
Number of pages6
JournalFEBS Letters
Volume408
Issue number1
DOIs
Publication statusPublished - 1997
Externally publishedYes

Fingerprint

Proto-Oncogene Proteins p21(ras)
Nitric Oxide Synthase Type II
Transcription
Glioma
Interferons
Genes
Chemical activation
DNA
Extracellular Signal-Regulated MAP Kinases
Mitogen-Activated Protein Kinases
Serine
Lipopolysaccharides
Transcription Factors
Phosphorylation
Gene Expression
Gene expression
Rats
2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one

Keywords

  • C6 glioma cell
  • ERK/MAPK
  • iNOS
  • Interferon-γ
  • Ras
  • Stat1

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Molecular Biology

Cite this

Activation of Stat1 and subsequent transcription of inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-γ-induced MAPK activation that is mediated by p21(ras). / Nishiya, T.; Uehara, Takashi; Edamatsu, H.; Kaziro, Y.; Itoh, H.; Nomura, Y.

In: FEBS Letters, Vol. 408, No. 1, 1997, p. 33-38.

Research output: Contribution to journalArticle

@article{5002ee5f784042758adfc8db27ae157b,
title = "Activation of Stat1 and subsequent transcription of inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-γ-induced MAPK activation that is mediated by p21(ras)",
abstract = "Rat C6 glioma cells have been used to characterize molecular events involved in the regulation of inducible nitric oxide synthase (iNOS) gene expression stimulated by interferon-γ (IFN-γ) plus lipopolysaccharide (LPS), IFNs induce a signaling event which involves activation of Stat1 transcription factor. Previous studies have shown that IFNs also induce extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) activation. However, the mechanisms by which IFNs stimulate MAPK activation remain elusive. Here we show that in C6 glioma cells, transiently expressing the dominant-negative form of c-Ha-Ras (Asn-17) abrogated IFN-γ-induced ERK1 and ERK2 activation. Furthermore, PD98059, a specific MEK1 inhibitor, also blocked this activation. These results indicate that p21(ras) and MEK1 are required for IFN-γ-induced ERK1 and ERK2 activation. Recent studies have reported that MAPK is responsible for serine phosphorylation of Stat1 which is required for Stat1's DNA binding and maximal transcriptional activity. Thus, we examined the role of the Ras-MAPK pathway in Stat1 activation and subsequent iNOS induction in C6 glioma cells. Further experiments showed that neither Asn-17 Ras expression nor concentrations of PD98059, which completely abrogated IFN-γ-induced ERK1 and ERK2 activation, affected Stat1 DNA binding activity or iNOS induction, indicating that the Ras-MAPK pathway does not appear to be involved in the activation of Stat1 and subsequent iNOS induction in C6 glioma cells.",
keywords = "C6 glioma cell, ERK/MAPK, iNOS, Interferon-γ, Ras, Stat1",
author = "T. Nishiya and Takashi Uehara and H. Edamatsu and Y. Kaziro and H. Itoh and Y. Nomura",
year = "1997",
doi = "10.1016/S0014-5793(97)00383-9",
language = "English",
volume = "408",
pages = "33--38",
journal = "FEBS Letters",
issn = "0014-5793",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - Activation of Stat1 and subsequent transcription of inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-γ-induced MAPK activation that is mediated by p21(ras)

AU - Nishiya, T.

AU - Uehara, Takashi

AU - Edamatsu, H.

AU - Kaziro, Y.

AU - Itoh, H.

AU - Nomura, Y.

PY - 1997

Y1 - 1997

N2 - Rat C6 glioma cells have been used to characterize molecular events involved in the regulation of inducible nitric oxide synthase (iNOS) gene expression stimulated by interferon-γ (IFN-γ) plus lipopolysaccharide (LPS), IFNs induce a signaling event which involves activation of Stat1 transcription factor. Previous studies have shown that IFNs also induce extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) activation. However, the mechanisms by which IFNs stimulate MAPK activation remain elusive. Here we show that in C6 glioma cells, transiently expressing the dominant-negative form of c-Ha-Ras (Asn-17) abrogated IFN-γ-induced ERK1 and ERK2 activation. Furthermore, PD98059, a specific MEK1 inhibitor, also blocked this activation. These results indicate that p21(ras) and MEK1 are required for IFN-γ-induced ERK1 and ERK2 activation. Recent studies have reported that MAPK is responsible for serine phosphorylation of Stat1 which is required for Stat1's DNA binding and maximal transcriptional activity. Thus, we examined the role of the Ras-MAPK pathway in Stat1 activation and subsequent iNOS induction in C6 glioma cells. Further experiments showed that neither Asn-17 Ras expression nor concentrations of PD98059, which completely abrogated IFN-γ-induced ERK1 and ERK2 activation, affected Stat1 DNA binding activity or iNOS induction, indicating that the Ras-MAPK pathway does not appear to be involved in the activation of Stat1 and subsequent iNOS induction in C6 glioma cells.

AB - Rat C6 glioma cells have been used to characterize molecular events involved in the regulation of inducible nitric oxide synthase (iNOS) gene expression stimulated by interferon-γ (IFN-γ) plus lipopolysaccharide (LPS), IFNs induce a signaling event which involves activation of Stat1 transcription factor. Previous studies have shown that IFNs also induce extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) activation. However, the mechanisms by which IFNs stimulate MAPK activation remain elusive. Here we show that in C6 glioma cells, transiently expressing the dominant-negative form of c-Ha-Ras (Asn-17) abrogated IFN-γ-induced ERK1 and ERK2 activation. Furthermore, PD98059, a specific MEK1 inhibitor, also blocked this activation. These results indicate that p21(ras) and MEK1 are required for IFN-γ-induced ERK1 and ERK2 activation. Recent studies have reported that MAPK is responsible for serine phosphorylation of Stat1 which is required for Stat1's DNA binding and maximal transcriptional activity. Thus, we examined the role of the Ras-MAPK pathway in Stat1 activation and subsequent iNOS induction in C6 glioma cells. Further experiments showed that neither Asn-17 Ras expression nor concentrations of PD98059, which completely abrogated IFN-γ-induced ERK1 and ERK2 activation, affected Stat1 DNA binding activity or iNOS induction, indicating that the Ras-MAPK pathway does not appear to be involved in the activation of Stat1 and subsequent iNOS induction in C6 glioma cells.

KW - C6 glioma cell

KW - ERK/MAPK

KW - iNOS

KW - Interferon-γ

KW - Ras

KW - Stat1

UR - http://www.scopus.com/inward/record.url?scp=0030997409&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030997409&partnerID=8YFLogxK

U2 - 10.1016/S0014-5793(97)00383-9

DO - 10.1016/S0014-5793(97)00383-9

M3 - Article

C2 - 9180263

AN - SCOPUS:0030997409

VL - 408

SP - 33

EP - 38

JO - FEBS Letters

JF - FEBS Letters

SN - 0014-5793

IS - 1

ER -