Activation of discoidin domain receptor 1 facilitates the maturation of human monocyte-derived dendritic cells through the TNF receptor associated factor 6/TGF-β-activated protein kinase 1 binding protein 1β/p38α mitogen-activated protein kinase signaling cascade

Wataru Matsuyama, Michel Faure, Teizo Yoshimura

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

Maturation of dendritic cells (DCs) is critical for their ability to stimulate resting naive T cells in primary immune responses. Previous studies demonstrated that collagen, such as type I collagen, could facilitate DC maturation; however, the basis of collagen-mediated DC maturation remains unclear. Discoidin domain receptor 1 (DDR1) is a nonintegrin collagen receptor constitutively expressed in a variety of epithelial cells, including tumor cells, and is inducible in leukocytes. In this study, we evaluated the role of DDR1 in DC maturation using human monocyte-derived DCs. Two DDR1 isoforms, DDR1a and DDR1b, were expressed in both immature and mature DCs. Activation of DDR1 on immature DCs resulted in their partial maturation; however, DDR1 activation markedly amplified TNF-α- and LPS-induced phenotypic and functional maturation of DCs through activation of p38 mitogen-activated protein kinase (MAPK), suggesting the involvement of DDR1b in this process. Activation of DDR1b on differentiated DDR1b-overexpressing THP-1 cells or DDR1 on mature DCs induced the formation of TNFR associated factor 6 (TRAF6)/TGF-β-activated kinase 1 binding protein 1β/p38α MAPK complex and p38α autophosphorylation. Transfection of differentiated DDR1b-overexpressing THP-1 cells with dominant negative TRAF6 completely abrogated DDR1b-mediated p38 MAPK phosphorylation, indicating a critical role of TRAF6 in DDR1b-mediated p38 MAPK activation. Taken together, our data suggest that DDR1b-collagen interaction augments the maturation of DCs in a tissue microenvironment through a unique TRAF6/TGF-β-activated kinase 1 binding protein 1β/p38α MAPK signaling cascade and contributes to the development of adaptive immune responses.

Original languageEnglish
Pages (from-to)3520-3532
Number of pages13
JournalJournal of Immunology
Volume171
Issue number7
Publication statusPublished - Oct 1 2003
Externally publishedYes

Fingerprint

TNF Receptor-Associated Factor 6
p38 Mitogen-Activated Protein Kinases
Dendritic Cells
Protein Kinases
Monocytes
Carrier Proteins
Collagen
Phosphotransferases
Discoidin Domain Receptor 1
Collagen Receptors
Adaptive Immunity
Collagen Type I
Transfection
Protein Isoforms
Leukocytes
Epithelial Cells

ASJC Scopus subject areas

  • Immunology

Cite this

@article{448ff0582e884517882c3bcc5d024ac8,
title = "Activation of discoidin domain receptor 1 facilitates the maturation of human monocyte-derived dendritic cells through the TNF receptor associated factor 6/TGF-β-activated protein kinase 1 binding protein 1β/p38α mitogen-activated protein kinase signaling cascade",
abstract = "Maturation of dendritic cells (DCs) is critical for their ability to stimulate resting naive T cells in primary immune responses. Previous studies demonstrated that collagen, such as type I collagen, could facilitate DC maturation; however, the basis of collagen-mediated DC maturation remains unclear. Discoidin domain receptor 1 (DDR1) is a nonintegrin collagen receptor constitutively expressed in a variety of epithelial cells, including tumor cells, and is inducible in leukocytes. In this study, we evaluated the role of DDR1 in DC maturation using human monocyte-derived DCs. Two DDR1 isoforms, DDR1a and DDR1b, were expressed in both immature and mature DCs. Activation of DDR1 on immature DCs resulted in their partial maturation; however, DDR1 activation markedly amplified TNF-α- and LPS-induced phenotypic and functional maturation of DCs through activation of p38 mitogen-activated protein kinase (MAPK), suggesting the involvement of DDR1b in this process. Activation of DDR1b on differentiated DDR1b-overexpressing THP-1 cells or DDR1 on mature DCs induced the formation of TNFR associated factor 6 (TRAF6)/TGF-β-activated kinase 1 binding protein 1β/p38α MAPK complex and p38α autophosphorylation. Transfection of differentiated DDR1b-overexpressing THP-1 cells with dominant negative TRAF6 completely abrogated DDR1b-mediated p38 MAPK phosphorylation, indicating a critical role of TRAF6 in DDR1b-mediated p38 MAPK activation. Taken together, our data suggest that DDR1b-collagen interaction augments the maturation of DCs in a tissue microenvironment through a unique TRAF6/TGF-β-activated kinase 1 binding protein 1β/p38α MAPK signaling cascade and contributes to the development of adaptive immune responses.",
author = "Wataru Matsuyama and Michel Faure and Teizo Yoshimura",
year = "2003",
month = "10",
day = "1",
language = "English",
volume = "171",
pages = "3520--3532",
journal = "Journal of Immunology",
issn = "0022-1767",
publisher = "American Association of Immunologists",
number = "7",

}

TY - JOUR

T1 - Activation of discoidin domain receptor 1 facilitates the maturation of human monocyte-derived dendritic cells through the TNF receptor associated factor 6/TGF-β-activated protein kinase 1 binding protein 1β/p38α mitogen-activated protein kinase signaling cascade

AU - Matsuyama, Wataru

AU - Faure, Michel

AU - Yoshimura, Teizo

PY - 2003/10/1

Y1 - 2003/10/1

N2 - Maturation of dendritic cells (DCs) is critical for their ability to stimulate resting naive T cells in primary immune responses. Previous studies demonstrated that collagen, such as type I collagen, could facilitate DC maturation; however, the basis of collagen-mediated DC maturation remains unclear. Discoidin domain receptor 1 (DDR1) is a nonintegrin collagen receptor constitutively expressed in a variety of epithelial cells, including tumor cells, and is inducible in leukocytes. In this study, we evaluated the role of DDR1 in DC maturation using human monocyte-derived DCs. Two DDR1 isoforms, DDR1a and DDR1b, were expressed in both immature and mature DCs. Activation of DDR1 on immature DCs resulted in their partial maturation; however, DDR1 activation markedly amplified TNF-α- and LPS-induced phenotypic and functional maturation of DCs through activation of p38 mitogen-activated protein kinase (MAPK), suggesting the involvement of DDR1b in this process. Activation of DDR1b on differentiated DDR1b-overexpressing THP-1 cells or DDR1 on mature DCs induced the formation of TNFR associated factor 6 (TRAF6)/TGF-β-activated kinase 1 binding protein 1β/p38α MAPK complex and p38α autophosphorylation. Transfection of differentiated DDR1b-overexpressing THP-1 cells with dominant negative TRAF6 completely abrogated DDR1b-mediated p38 MAPK phosphorylation, indicating a critical role of TRAF6 in DDR1b-mediated p38 MAPK activation. Taken together, our data suggest that DDR1b-collagen interaction augments the maturation of DCs in a tissue microenvironment through a unique TRAF6/TGF-β-activated kinase 1 binding protein 1β/p38α MAPK signaling cascade and contributes to the development of adaptive immune responses.

AB - Maturation of dendritic cells (DCs) is critical for their ability to stimulate resting naive T cells in primary immune responses. Previous studies demonstrated that collagen, such as type I collagen, could facilitate DC maturation; however, the basis of collagen-mediated DC maturation remains unclear. Discoidin domain receptor 1 (DDR1) is a nonintegrin collagen receptor constitutively expressed in a variety of epithelial cells, including tumor cells, and is inducible in leukocytes. In this study, we evaluated the role of DDR1 in DC maturation using human monocyte-derived DCs. Two DDR1 isoforms, DDR1a and DDR1b, were expressed in both immature and mature DCs. Activation of DDR1 on immature DCs resulted in their partial maturation; however, DDR1 activation markedly amplified TNF-α- and LPS-induced phenotypic and functional maturation of DCs through activation of p38 mitogen-activated protein kinase (MAPK), suggesting the involvement of DDR1b in this process. Activation of DDR1b on differentiated DDR1b-overexpressing THP-1 cells or DDR1 on mature DCs induced the formation of TNFR associated factor 6 (TRAF6)/TGF-β-activated kinase 1 binding protein 1β/p38α MAPK complex and p38α autophosphorylation. Transfection of differentiated DDR1b-overexpressing THP-1 cells with dominant negative TRAF6 completely abrogated DDR1b-mediated p38 MAPK phosphorylation, indicating a critical role of TRAF6 in DDR1b-mediated p38 MAPK activation. Taken together, our data suggest that DDR1b-collagen interaction augments the maturation of DCs in a tissue microenvironment through a unique TRAF6/TGF-β-activated kinase 1 binding protein 1β/p38α MAPK signaling cascade and contributes to the development of adaptive immune responses.

UR - http://www.scopus.com/inward/record.url?scp=0141955108&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0141955108&partnerID=8YFLogxK

M3 - Article

C2 - 14500648

AN - SCOPUS:0141955108

VL - 171

SP - 3520

EP - 3532

JO - Journal of Immunology

JF - Journal of Immunology

SN - 0022-1767

IS - 7

ER -