Acidic Pre-Conditioning Enhances the Stem Cell Phenotype of Human Bone Marrow Stem/Progenitor Cells

Yuri Hazehara-Kunitomo, Emilio satoshi Hara, Mitsuaki Ono, Kyaw Thu Aung, Keiko Komi, Hai Thanh Pham, Kentaro Akiyama, Masahiro Okada, Toshitaka Oohashi, Takuya Matsumoto, Takuo Kuboki

Research output: Contribution to journalArticle

Abstract

A deeper understanding of the detailed mechanism of in vivo tissue healing is necessary for the development of novel regenerative therapies. Among several external factors, environmental pH is one of the crucial parameters that greatly affects enzyme activity and cellular biochemical reactions involving tissue repair and homeostasis. In this study, in order to analyze the microenvironmental conditions during bone healing, we first measured the pH in vivo at the bone healing site using a high-resolution fiber optic pH microsensor directly in femur defects and tooth extraction sockets. The pH was shown to decrease from physiological 7.4 to 6.8 during the initial two days of healing (inflammatory phase). In the same initial stages of the inflammatory phase of the bone healing process, mesenchymal stem cells (MSCs) are known to migrate to the healing site to contribute to tissue repair. Therefore, we investigated the effect of a short-term acidic (pH 6.8) pre-treatment on the stemness of bone marrow-derived MSCs (BMSCs). Interestingly, the results showed that pre-treatment of BMSCs with acidic pH enhances the expression of stem cell markers (OCT-4, NANOG, SSEA-4), as well as cell viability and proliferation. On the other hand, acidic pH decreased BMSC migration ability. These results indicate that acidic pH during the initial stages of bone healing is important to enhance the stem cell properties of BMSCs. These findings may enable the development of novel methods for optimization of stem cell function towards tissue engineering or regenerative medicine.

Original languageEnglish
JournalInternational journal of molecular sciences
Volume20
Issue number5
DOIs
Publication statusPublished - Mar 4 2019

Fingerprint

preconditioning
phenotype
bone marrow
stem cells
Stem cells
healing
Bone Marrow Cells
Bone
Stem Cells
Phenotype
bones
Bone Marrow
Bone and Bones
Tissue
Mesenchymal Stromal Cells
pretreatment
Tooth Socket
Repair
homeostasis
femur

Keywords

  • acidic treatment
  • bone healing
  • mesenchymal stem cells
  • stemness

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this

@article{f497764c0bb741cea4f274ddd09d6834,
title = "Acidic Pre-Conditioning Enhances the Stem Cell Phenotype of Human Bone Marrow Stem/Progenitor Cells",
abstract = "A deeper understanding of the detailed mechanism of in vivo tissue healing is necessary for the development of novel regenerative therapies. Among several external factors, environmental pH is one of the crucial parameters that greatly affects enzyme activity and cellular biochemical reactions involving tissue repair and homeostasis. In this study, in order to analyze the microenvironmental conditions during bone healing, we first measured the pH in vivo at the bone healing site using a high-resolution fiber optic pH microsensor directly in femur defects and tooth extraction sockets. The pH was shown to decrease from physiological 7.4 to 6.8 during the initial two days of healing (inflammatory phase). In the same initial stages of the inflammatory phase of the bone healing process, mesenchymal stem cells (MSCs) are known to migrate to the healing site to contribute to tissue repair. Therefore, we investigated the effect of a short-term acidic (pH 6.8) pre-treatment on the stemness of bone marrow-derived MSCs (BMSCs). Interestingly, the results showed that pre-treatment of BMSCs with acidic pH enhances the expression of stem cell markers (OCT-4, NANOG, SSEA-4), as well as cell viability and proliferation. On the other hand, acidic pH decreased BMSC migration ability. These results indicate that acidic pH during the initial stages of bone healing is important to enhance the stem cell properties of BMSCs. These findings may enable the development of novel methods for optimization of stem cell function towards tissue engineering or regenerative medicine.",
keywords = "acidic treatment, bone healing, mesenchymal stem cells, stemness",
author = "Yuri Hazehara-Kunitomo and Emilio satoshi Hara and Mitsuaki Ono and Aung, {Kyaw Thu} and Keiko Komi and Pham, {Hai Thanh} and Kentaro Akiyama and Masahiro Okada and Toshitaka Oohashi and Takuya Matsumoto and Takuo Kuboki",
year = "2019",
month = "3",
day = "4",
doi = "10.3390/ijms20051097",
language = "English",
volume = "20",
journal = "International Journal of Molecular Sciences",
issn = "1661-6596",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "5",

}

TY - JOUR

T1 - Acidic Pre-Conditioning Enhances the Stem Cell Phenotype of Human Bone Marrow Stem/Progenitor Cells

AU - Hazehara-Kunitomo, Yuri

AU - Hara, Emilio satoshi

AU - Ono, Mitsuaki

AU - Aung, Kyaw Thu

AU - Komi, Keiko

AU - Pham, Hai Thanh

AU - Akiyama, Kentaro

AU - Okada, Masahiro

AU - Oohashi, Toshitaka

AU - Matsumoto, Takuya

AU - Kuboki, Takuo

PY - 2019/3/4

Y1 - 2019/3/4

N2 - A deeper understanding of the detailed mechanism of in vivo tissue healing is necessary for the development of novel regenerative therapies. Among several external factors, environmental pH is one of the crucial parameters that greatly affects enzyme activity and cellular biochemical reactions involving tissue repair and homeostasis. In this study, in order to analyze the microenvironmental conditions during bone healing, we first measured the pH in vivo at the bone healing site using a high-resolution fiber optic pH microsensor directly in femur defects and tooth extraction sockets. The pH was shown to decrease from physiological 7.4 to 6.8 during the initial two days of healing (inflammatory phase). In the same initial stages of the inflammatory phase of the bone healing process, mesenchymal stem cells (MSCs) are known to migrate to the healing site to contribute to tissue repair. Therefore, we investigated the effect of a short-term acidic (pH 6.8) pre-treatment on the stemness of bone marrow-derived MSCs (BMSCs). Interestingly, the results showed that pre-treatment of BMSCs with acidic pH enhances the expression of stem cell markers (OCT-4, NANOG, SSEA-4), as well as cell viability and proliferation. On the other hand, acidic pH decreased BMSC migration ability. These results indicate that acidic pH during the initial stages of bone healing is important to enhance the stem cell properties of BMSCs. These findings may enable the development of novel methods for optimization of stem cell function towards tissue engineering or regenerative medicine.

AB - A deeper understanding of the detailed mechanism of in vivo tissue healing is necessary for the development of novel regenerative therapies. Among several external factors, environmental pH is one of the crucial parameters that greatly affects enzyme activity and cellular biochemical reactions involving tissue repair and homeostasis. In this study, in order to analyze the microenvironmental conditions during bone healing, we first measured the pH in vivo at the bone healing site using a high-resolution fiber optic pH microsensor directly in femur defects and tooth extraction sockets. The pH was shown to decrease from physiological 7.4 to 6.8 during the initial two days of healing (inflammatory phase). In the same initial stages of the inflammatory phase of the bone healing process, mesenchymal stem cells (MSCs) are known to migrate to the healing site to contribute to tissue repair. Therefore, we investigated the effect of a short-term acidic (pH 6.8) pre-treatment on the stemness of bone marrow-derived MSCs (BMSCs). Interestingly, the results showed that pre-treatment of BMSCs with acidic pH enhances the expression of stem cell markers (OCT-4, NANOG, SSEA-4), as well as cell viability and proliferation. On the other hand, acidic pH decreased BMSC migration ability. These results indicate that acidic pH during the initial stages of bone healing is important to enhance the stem cell properties of BMSCs. These findings may enable the development of novel methods for optimization of stem cell function towards tissue engineering or regenerative medicine.

KW - acidic treatment

KW - bone healing

KW - mesenchymal stem cells

KW - stemness

UR - http://www.scopus.com/inward/record.url?scp=85062639551&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062639551&partnerID=8YFLogxK

U2 - 10.3390/ijms20051097

DO - 10.3390/ijms20051097

M3 - Article

C2 - 30836626

AN - SCOPUS:85062639551

VL - 20

JO - International Journal of Molecular Sciences

JF - International Journal of Molecular Sciences

SN - 1661-6596

IS - 5

ER -