TY - JOUR
T1 - Absence of Nogo-B (Reticulon 4B) facilitates hepatic stellate cell apoptosis and diminishes hepatic fibrosis in mice
AU - Tashiro, Keitaro
AU - Satoh, Ayano
AU - Utsumi, Teruo
AU - Chung, Chuhan
AU - Iwakiri, Yasuko
N1 - Funding Information:
Supported by grants R01DK082600 and a Yale Liver Center Pilot Project Award ( P30-34989 ) from the NIH (Y.I.), a Female Researcher Science grant from Shiseido Japan (A.S.), and a VA merit award (C.C.).
PY - 2013/3
Y1 - 2013/3
N2 - Nogo-B (reticulon 4B) accentuates hepatic fibrosis and cirrhosis, but the mechanism remains unclear. The aim of this study was to identify the role of Nogo-B in hepatic stellate cell (HSC) apoptosis in cirrhotic livers. Cirrhosis was generated by carbon tetrachloride inhalation in wild-type (WT) and Nogo-A/B knockout (Nogo-B KO) mice. HSCs were isolated from WT and Nogo-B KO mice and cultured for activation and transformation to myofibroblasts (MF-HSCs). Human hepatic stellate cells (LX2 cells) were used to assess apoptotic responses of activated HSCs after silencing or overexpressing Nogo-B. Livers from cirrhotic Nogo-B KO mice showed significantly reduced fibrosis (P < 0.05) compared with WT mice. Apoptotic cells were more prominent in fibrotic areas of cirrhotic Nogo-B KO livers. Nogo-B KO MF-HSCs showed significantly increased levels of apoptotic markers, cleaved poly (ADP-ribose) polymerase, and caspase-3 and -8 (P < 0.05) compared with WT MF-HSCs in response to staurosporine. Treatment with tunicamycin, an endoplasmic reticulum stress inducer, increased cleaved caspase-3 and -8 levels in Nogo-B KO MF-HSCs compared with WT MF-HSCs (P < 0.01). In LX2 cells, Nogo-B knockdown enhanced apoptosis in response to staurosporine, whereas Nogo-B overexpression inhibited apoptosis. The absence of Nogo-B enhances apoptosis of HSCs in experimental cirrhosis. Selective blockade of Nogo-B in HSCs may represent a potential therapeutic strategy to mitigate liver fibrosis.
AB - Nogo-B (reticulon 4B) accentuates hepatic fibrosis and cirrhosis, but the mechanism remains unclear. The aim of this study was to identify the role of Nogo-B in hepatic stellate cell (HSC) apoptosis in cirrhotic livers. Cirrhosis was generated by carbon tetrachloride inhalation in wild-type (WT) and Nogo-A/B knockout (Nogo-B KO) mice. HSCs were isolated from WT and Nogo-B KO mice and cultured for activation and transformation to myofibroblasts (MF-HSCs). Human hepatic stellate cells (LX2 cells) were used to assess apoptotic responses of activated HSCs after silencing or overexpressing Nogo-B. Livers from cirrhotic Nogo-B KO mice showed significantly reduced fibrosis (P < 0.05) compared with WT mice. Apoptotic cells were more prominent in fibrotic areas of cirrhotic Nogo-B KO livers. Nogo-B KO MF-HSCs showed significantly increased levels of apoptotic markers, cleaved poly (ADP-ribose) polymerase, and caspase-3 and -8 (P < 0.05) compared with WT MF-HSCs in response to staurosporine. Treatment with tunicamycin, an endoplasmic reticulum stress inducer, increased cleaved caspase-3 and -8 levels in Nogo-B KO MF-HSCs compared with WT MF-HSCs (P < 0.01). In LX2 cells, Nogo-B knockdown enhanced apoptosis in response to staurosporine, whereas Nogo-B overexpression inhibited apoptosis. The absence of Nogo-B enhances apoptosis of HSCs in experimental cirrhosis. Selective blockade of Nogo-B in HSCs may represent a potential therapeutic strategy to mitigate liver fibrosis.
UR - http://www.scopus.com/inward/record.url?scp=84874513572&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874513572&partnerID=8YFLogxK
U2 - 10.1016/j.ajpath.2012.11.032
DO - 10.1016/j.ajpath.2012.11.032
M3 - Article
C2 - 23313137
AN - SCOPUS:84874513572
VL - 182
SP - 786
EP - 795
JO - American Journal of Pathology
JF - American Journal of Pathology
SN - 0002-9440
IS - 3
ER -