TY - JOUR
T1 - Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants
AU - Murata, Y.
AU - Pei, Z. M.
AU - Mori, I. C.
AU - Schroeder, J.
PY - 2001
Y1 - 2001
N2 - The hormone abscisic acid (ABA) regulates stress responses and developmental processes in plants. Calcium-permeable channels activated by reactive oxygen species (ROS) have been shown recently to function in the ABA signaling network in Arabidopsis guard cells. Here, we report that ABA activation of these ICa Ca2+ channels requires the presence of NAD(P)H in the cytosol. The protein phosphatase 2C (PP2C) mutant abi1-1 disrupted ABA activation of ICa channels. Moreover, in abi1-1, ABA did not induce ROS production. Consistent with these findings, in abi1-1, H2O2 activation of ICa channels and H2O2-induced stomatal closing were not disrupted, suggesting that abi1-1 impairs ABA signaling between ABA reception and ROS production. The abi2-1 mutation, which lies in a distinct PP2C gene, also disrupted ABA activation of ICa. However, in contrast to abi1-1, abi2-1 impaired both H2O2 activation of ICa and H2O2-induced stomatal closing. Furthermore, ABA elicited ROS production in abi2-1. These data suggest a model with the following sequence of events in early ABA signal transduction: ABA, abi1-1, NAD(P)H-dependent ROS production, abi2-1, ICa Ca2+ channel activation followed by stomatal closing.
AB - The hormone abscisic acid (ABA) regulates stress responses and developmental processes in plants. Calcium-permeable channels activated by reactive oxygen species (ROS) have been shown recently to function in the ABA signaling network in Arabidopsis guard cells. Here, we report that ABA activation of these ICa Ca2+ channels requires the presence of NAD(P)H in the cytosol. The protein phosphatase 2C (PP2C) mutant abi1-1 disrupted ABA activation of ICa channels. Moreover, in abi1-1, ABA did not induce ROS production. Consistent with these findings, in abi1-1, H2O2 activation of ICa channels and H2O2-induced stomatal closing were not disrupted, suggesting that abi1-1 impairs ABA signaling between ABA reception and ROS production. The abi2-1 mutation, which lies in a distinct PP2C gene, also disrupted ABA activation of ICa. However, in contrast to abi1-1, abi2-1 impaired both H2O2 activation of ICa and H2O2-induced stomatal closing. Furthermore, ABA elicited ROS production in abi2-1. These data suggest a model with the following sequence of events in early ABA signal transduction: ABA, abi1-1, NAD(P)H-dependent ROS production, abi2-1, ICa Ca2+ channel activation followed by stomatal closing.
UR - http://www.scopus.com/inward/record.url?scp=0035209746&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035209746&partnerID=8YFLogxK
U2 - 10.1105/tpc.13.11.2513
DO - 10.1105/tpc.13.11.2513
M3 - Article
C2 - 11701885
AN - SCOPUS:0035209746
SN - 1040-4651
VL - 13
SP - 2513
EP - 2523
JO - Plant Cell
JF - Plant Cell
IS - 11
ER -