A pure subalgebra of a finitely generated algebra is finitely generated

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We prove the following. Let R be a Noetherian commutative ring, B a finitely generated R-algebra, and A a pure R-subalgebra of B. Then A is finitely generated over R.

Original languageEnglish
Pages (from-to)2233-2235
Number of pages3
JournalProceedings of the American Mathematical Society
Volume133
Issue number8
DOIs
Publication statusPublished - Aug 2005
Externally publishedYes

Fingerprint

Algebra
Finitely Generated
Subalgebra
Noetherian Ring
Commutative Ring

Keywords

  • Finite generation
  • Flattening
  • Pure subalgebra

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

A pure subalgebra of a finitely generated algebra is finitely generated. / Hashimoto, Mitsuyasu.

In: Proceedings of the American Mathematical Society, Vol. 133, No. 8, 08.2005, p. 2233-2235.

Research output: Contribution to journalArticle

@article{76f164e7182b42fcbdf84efd12c4069b,
title = "A pure subalgebra of a finitely generated algebra is finitely generated",
abstract = "We prove the following. Let R be a Noetherian commutative ring, B a finitely generated R-algebra, and A a pure R-subalgebra of B. Then A is finitely generated over R.",
keywords = "Finite generation, Flattening, Pure subalgebra",
author = "Mitsuyasu Hashimoto",
year = "2005",
month = "8",
doi = "10.1090/S0002-9939-05-07967-0",
language = "English",
volume = "133",
pages = "2233--2235",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "8",

}

TY - JOUR

T1 - A pure subalgebra of a finitely generated algebra is finitely generated

AU - Hashimoto, Mitsuyasu

PY - 2005/8

Y1 - 2005/8

N2 - We prove the following. Let R be a Noetherian commutative ring, B a finitely generated R-algebra, and A a pure R-subalgebra of B. Then A is finitely generated over R.

AB - We prove the following. Let R be a Noetherian commutative ring, B a finitely generated R-algebra, and A a pure R-subalgebra of B. Then A is finitely generated over R.

KW - Finite generation

KW - Flattening

KW - Pure subalgebra

UR - http://www.scopus.com/inward/record.url?scp=23744488312&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=23744488312&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-05-07967-0

DO - 10.1090/S0002-9939-05-07967-0

M3 - Article

VL - 133

SP - 2233

EP - 2235

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 8

ER -