A preliminary study for constructing a bioartificial liver device with induced pluripotent stem cell-derived hepatocytes

Masaya Iwamuro, Hidenori Shiraha, Shuhei Nakaji, Masumi Furutani, Naoya Kobayashi, Akinobu Takaki, Kazuhide Yamamoto

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Background: Bioartificial liver systems, designed to support patients with liver failure, are composed of bioreactors and functional hepatocytes. Immunological rejection of the embedded hepatocytes by the host immune system is a serious concern that crucially degrades the performance of the device. Induced pluripotent stem (iPS) cells are considered a desirable source for bioartificial liver systems, because patient-derived iPS cells are free from immunological rejection. The purpose of this paper was to test the feasibility of a bioartificial liver system with iPS cell-derived hepatocyte-like cells.Methods: Mouse iPS cells were differentiated into hepatocyte-like cells by a multi-step differentiation protocol via embryoid bodies and definitive endoderm. Differentiation of iPS cells was evaluated by morphology, PCR assay, and functional assays. iPS cell-derived hepatocyte-like cells were cultured in a bioreactor module with a pore size of 0.2 μm for 7 days. The amount of albumin secreted into the circulating medium was analyzed by ELISA. Additionally, after a 7-day culture in a bioreactor module, cells were observed by a scanning electron microscope.Results: At the final stage of the differentiation program, iPS cells changed their morphology to a polygonal shape with two nucleoli and enriched cytoplasmic granules. Transmission electron microscope analysis revealed their polygonal shape, glycogen deposition in the cytoplasm, microvilli on their surfaces, and a duct-like arrangement. PCR analysis showed increased expression of albumin mRNA over the course of the differentiation program. Albumin and urea production was also observed. iPS-Heps culture in bioreactor modules showed the accumulation of albumin in the medium for up to 7 days. Scanning electron microscopy revealed the attachment of cell clusters to the hollow fibers of the module. These results indicated that iPS cells were differentiated into hepatocyte-like cells after culture for 7 days in a bioreactor module with a pore size of 0.2 μm.Conclusion: We consider the combination of a bioreactor module with a 0.2-μm pore membrane and embedded hepatocytes differentiated from iPS cells to be a promising option for bioartificial liver systems. This paper provides the basic concept and preliminary data for an iPS cell-oriented bioartificial liver system.PACS code: 87. Biological and medical physics, 87.85.-d Biomedical engineering, 87.85.Lf Tissue engineering, 87.85.Tu Modeling biomedical systems.

Original languageEnglish
Article number93
JournalBioMedical Engineering Online
Volume11
DOIs
Publication statusPublished - Dec 7 2012

Keywords

  • Antibody-mediated rejection
  • Bioartificial liver system
  • Hepatocyte differentiation
  • Hollow fiber bioreactor
  • Induced pluripotent stem cells

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Biomaterials
  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'A preliminary study for constructing a bioartificial liver device with induced pluripotent stem cell-derived hepatocytes'. Together they form a unique fingerprint.

  • Cite this