A polarly localized transporter for efficient manganese uptake in rice

Daisei Ueno, Akimasa Sasaki, Naoki Yamaji, Takaaki Miyaji, Yumi Fujii, Yuma Takemoto, Sawako Moriyama, Jing Che, Yoshinori Moriyama, Kozo Iwasaki, Jian Feng Ma

Research output: Contribution to journalArticlepeer-review

115 Citations (Scopus)


Manganese is an essential metal for plant growth. A number of transporters involved in the uptake of manganese from soils, and its translocation to the shoot, have been identified in Arabidopsis and rice. However, the transporter responsible for the radial transport of manganese out of root exodermis and endodermis cells and into the root stele remains unknown. Here, we show that metal tolerance protein 9 (MTP9), a member of the cation diffusion facilitator family, is a critical player in this process in rice (Oryza sativa). We find that MTP9 is mainly expressed in roots, and that the resulting protein is localized to the plasma membrane of exo- and endodermis cells, at the proximal side of these cell layers (opposite the manganese uptake transporter Nramp5, which is found at the distal side). We demonstrate that MTP9 has manganese transport activity by expression in proteoliposomes and yeast, and show that knockout of MTP9 in rice reduces manganese uptake and its translocation to shoots. We conclude that at least in rice MTP9 is required for manganese translocation to the root stele, and thereby manganese uptake.

Original languageEnglish
Article number15170
JournalNature Plants
Publication statusPublished - Nov 9 2015

ASJC Scopus subject areas

  • Plant Science


Dive into the research topics of 'A polarly localized transporter for efficient manganese uptake in rice'. Together they form a unique fingerprint.

Cite this