A passive type multiple-model adaptive control (MMAC) of linear discrete-time stochastic systems with uncertain observation subsystems

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

A passive type multiple-model adaptive control (MMAC) algorithm is presented for linear discrete-time stochastic systems with observation subsystems which involve unknown but constant parameters. The unknown parameters are assumed to belong to a finite set on which a prior probability distribution is available. A suboptimal control policy is adopted so that the problem of minimizing the original quadratic cost can be replaced by that of minimizing the ‘elemental quadratic cost’. It is shown that the present MMAC method is slightly different from the well known Lainiotis et al. (1973) method, viz. the elemental control is fed back to the elemental filter and, further, the solution method of the elemental filter gain depends on both the elemental and adaptive control decisions. It is also demonstrated, through some Monte Carlo simulations, that for unstable systems performance improvements over the Lainiotis et al. (1973) method are achieved using the present method.

Original languageEnglish
Pages (from-to)647-659
Number of pages13
JournalInternational Journal of Systems Science
Volume15
Issue number6
DOIs
Publication statusPublished - Jun 1984
Externally publishedYes

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Theoretical Computer Science
  • Computer Science Applications

Fingerprint Dive into the research topics of 'A passive type multiple-model adaptive control (MMAC) of linear discrete-time stochastic systems with uncertain observation subsystems'. Together they form a unique fingerprint.

  • Cite this