A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation

Noritoshi Enatsu, Isao Miyatsuka, Le My An, Miki Inubushi, Kunihiro Enatsu, Junko Otsuki, Toshiroh Iwasaki, Shoji Kokeguchi, Masahide Shiotani

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: The purpose of the study was to invent and evaluate the novel artificial intelligence (AI) system named Fertility image Testing Through Embryo (FiTTE) for predicting blastocyst viability and visualizing the explanations via gradient-based localization. Methods: The authors retrospectively analyzed 19 342 static blastocyst images with related inspection histories from 9961 infertile patients who underwent in vitro fertilization. Among these data, 17 984 cycles of single-blastocyst transfer were used for training, and data from 1358 cycles were used for testing purposes. Results: The prediction accuracy for clinical pregnancy achieved by a control model using conventional Gardner scoring system was 59.8%, and area under the curve (AUC) was 0.62. FiTTE improved the prediction accuracy by using blastocyst images to 62.7% and AUC of 0.68. Additionally, the accuracy achieved by an ensemble model using image plus clinical data was 65.2% and AUC was 0.71, representing an improvement in prediction accuracy. The visualization algorithm showed brighter colors with blastocysts that resulted in clinical pregnancy. Conclusions: The authors invented the novel AI system, FiTTE, which could provide more precise prediction of the probability of clinical pregnancy using blastocyst images secondary to single embryo transfer than the conventional Gardner scoring assessments. FiTTE could also provide explanation of AI prediction using colored blastocyst images.

Original languageEnglish
Article numbere12443
JournalReproductive Medicine and Biology
Volume21
Issue number1
DOIs
Publication statusPublished - Jan 1 2022

Keywords

  • artificial intelligence
  • assisted reproductive technology
  • gradient-weighted class activation mapping
  • in vitro fertilization

ASJC Scopus subject areas

  • Reproductive Medicine
  • Cell Biology

Fingerprint

Dive into the research topics of 'A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation'. Together they form a unique fingerprint.

Cite this