A novel role of HSP90 in regulating osteoclastogenesis by abrogating Rab11b-driven transport

Manh Tien Tran, Yuka Okusha, Yunxia Feng, Chiharu Sogawa, Takanori Eguchi, Tomoko Kadowaki, Eiko Sakai, Takayuki Tsukuba, Kuniaki Okamoto

Research output: Contribution to journalArticlepeer-review

Abstract

Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays a pivotal role in folding, activating and assembling a variety of client proteins. In addition, HSP90 has recently emerged as a crucial regulator of vesicular transport of cellular proteins. In our previous study, we revealed Rab11b negatively regulated osteoclastogenesis by promoting the lysosomal proteolysis of c-fms and RANK surface receptors via the axis of early endosome-late endosome-lysosomes. In this study, using an in vitro model of osteoclasts differentiated from murine macrophage-like RAW-D cells, we revealed that Rab11b interacted with both HSP90 isoforms, HSP90 alpha (HSP90α) and HSP90 beta (HSP90β), suggesting that Rab11b is an HSP90 client. Using at specific blocker for HSP90 ATPase activity, 17-allylamino-demethoxygeldanamycin (17-AAG), we found that the HSP90 ATPase domain is indispensable for maintaining the interaction between HSP90 and Rab11b in osteoclasts. Nonetheless, its ATPase activity is not required for regulating the turnover of endogenous Rab11b. Interestingly, blocking the interaction between HSP90 and Rab11b by either HSP90-targeting small interfering RNA (siHSP90) or 17-AAG abrogated the inhibitory effects of Rab11b on osteoclastogenesis by suppressing the Rab11b-mediated transport of c-fms and RANK surface receptors to lysosomes via the axis of early endosome-late endosome-lysosomes, alleviating the Rab11b-mediated proteolysis of these surface receptors in osteoclasts. Based on our observations, we propose a HSP90/Rab11b-mediated regulatory mechanism for osteoclastogenesis by directly modulating the c-fms and RANK surface receptors in osteoclasts, thereby contributing to the maintenance of bone homeostasis.

Original languageEnglish
Article number119096
JournalBiochimica et Biophysica Acta - Molecular Cell Research
Volume1868
Issue number10
DOIs
Publication statusPublished - Sep 2021
Externally publishedYes

Keywords

  • Heat shock protein 90 (HSP90)
  • Osteoclasts
  • Rab11b
  • Vesicular transport

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'A novel role of HSP90 in regulating osteoclastogenesis by abrogating Rab11b-driven transport'. Together they form a unique fingerprint.

Cite this