A note on the Buchsbaum-Rim multiplicity of a parameter module

Futoshi Hayasaka, Eero Hyry

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In this article we prove that the Buchsbaum-Rim multiplicity e(F/N) of a parameter module N in a free module F=Ar is bounded above by the colength ℓA(F/N). Moreover, we prove that once the equality ℓA(F/N) = e(F/N) holds true for some parameter module N in F,then the base ring A is Cohen-Macaulay.

Original languageEnglish
Pages (from-to)545-551
Number of pages7
JournalProceedings of the American Mathematical Society
Volume138
Issue number2
DOIs
Publication statusPublished - Feb 2010
Externally publishedYes

Fingerprint

Multiplicity
Module
Cohen-Macaulay
Equality
Ring

Keywords

  • Buchsbaum-Rim multiplicity
  • Euler-Poincaréchar- acteristic
  • Generalized Koszul complex
  • Parameter module

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

A note on the Buchsbaum-Rim multiplicity of a parameter module. / Hayasaka, Futoshi; Hyry, Eero.

In: Proceedings of the American Mathematical Society, Vol. 138, No. 2, 02.2010, p. 545-551.

Research output: Contribution to journalArticle

@article{13054214effd4029b7cb2db2ecd89fce,
title = "A note on the Buchsbaum-Rim multiplicity of a parameter module",
abstract = "In this article we prove that the Buchsbaum-Rim multiplicity e(F/N) of a parameter module N in a free module F=Ar is bounded above by the colength ℓA(F/N). Moreover, we prove that once the equality ℓA(F/N) = e(F/N) holds true for some parameter module N in F,then the base ring A is Cohen-Macaulay.",
keywords = "Buchsbaum-Rim multiplicity, Euler-Poincar{\'e}char- acteristic, Generalized Koszul complex, Parameter module",
author = "Futoshi Hayasaka and Eero Hyry",
year = "2010",
month = "2",
doi = "10.1090/S0002-9939-09-10119-3",
language = "English",
volume = "138",
pages = "545--551",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "2",

}

TY - JOUR

T1 - A note on the Buchsbaum-Rim multiplicity of a parameter module

AU - Hayasaka, Futoshi

AU - Hyry, Eero

PY - 2010/2

Y1 - 2010/2

N2 - In this article we prove that the Buchsbaum-Rim multiplicity e(F/N) of a parameter module N in a free module F=Ar is bounded above by the colength ℓA(F/N). Moreover, we prove that once the equality ℓA(F/N) = e(F/N) holds true for some parameter module N in F,then the base ring A is Cohen-Macaulay.

AB - In this article we prove that the Buchsbaum-Rim multiplicity e(F/N) of a parameter module N in a free module F=Ar is bounded above by the colength ℓA(F/N). Moreover, we prove that once the equality ℓA(F/N) = e(F/N) holds true for some parameter module N in F,then the base ring A is Cohen-Macaulay.

KW - Buchsbaum-Rim multiplicity

KW - Euler-Poincaréchar- acteristic

KW - Generalized Koszul complex

KW - Parameter module

UR - http://www.scopus.com/inward/record.url?scp=77951443869&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951443869&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-09-10119-3

DO - 10.1090/S0002-9939-09-10119-3

M3 - Article

AN - SCOPUS:77951443869

VL - 138

SP - 545

EP - 551

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 2

ER -