A new pulse shape description for α particle pulses in a highly-sensitive sub-Kelvin bolometer

S. L. Stever, F. Couchot, N. Coron, R. M.J. Janssen, B. Maffei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

The next generation of cosmology space missions will be sensitive to parasitic signals arising from cosmic rays. Using a composite bolometer, we have investigated pulses produced by α particles in order to understand the movement of energy produced by ionising radiation. Using a series of measurements at 100 mK, we have compared the typical fitting algorithm (a mathematical model) with a second method of pulse interpretation by convolving the detector's thermal response function with a starting profile of thermalised athermal phonons, taking into account the effects of heat propagation. Using this new fitting method, we have eliminated the need for a non-physical quadratic nonlinearity factor produced using more common methods, and we find a pulse form in good agreement with known aspects of thermal physics. This work is carried forward in the effort to produce a physical model for energy deposition in this detector. The modelling is motivated by the reproduction of statistical features in the experimental dataset, and the new interpretation of α pulse shapes represents an improvement in the current understanding of the energy propagation mechanisms in this detector.

Original languageEnglish
Title of host publicationSpace Telescopes and Instrumentation 2018
Subtitle of host publicationOptical, Infrared, and Millimeter Wave
EditorsGiovanni G. Fazio, Howard A. MacEwen, Makenzie Lystrup
PublisherSPIE
ISBN (Print)9781510619494
DOIs
Publication statusPublished - 2018
Externally publishedYes
EventSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave - Austin, United States
Duration: Jun 10 2018Jun 15 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10698
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave
CountryUnited States
CityAustin
Period6/10/186/15/18

Keywords

  • Bolometer
  • Cosmic ray
  • Particle interactions
  • Particles
  • Sub-millimetre

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A new pulse shape description for α particle pulses in a highly-sensitive sub-Kelvin bolometer'. Together they form a unique fingerprint.

Cite this