A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse

Research output: Contribution to journalArticle

98 Citations (Scopus)

Abstract

The achondroplastic mouse is a spontaneous mutant characterized by disproportionate dwarfism with short limbs and tail due to disturbed chondrogenesis during endochondral ossification. These abnormal phenotypes are controlled by an autosomal recessive gene (cn). In this study, linkage analysis using 115 affected mice of F2 progeny mapped the cn locus on an ∼0.8-cM region of chromosome 4, and natriuretic peptide receptor 2 (Npr2) gene was identified as the most potent candidate for the cn mutant in this region. This gene encodes a receptor for C-type natriuretic peptide (CNP) that positively regulates longitudinal bone growth by producing cGMP in response to CNP binding to the extracellular domain. Sequence analyses of the Npr2 gene in cn/cn mice revealed a T to G transversion leading to the amino acid substitution of highly conserved Leu with Arg in the guanylyl cyclase domain. In cultured chondrocytes of cn/cn mice, stimulus with CNP did not significantly increase intracellular cGMP concentration, whereas it increased in +/+ mice. Transfection of the mutant Npr2 gene into COS-7 cells also showed similar results, indicating that the missense mutation of the Npr2 gene in cn/cn mice resulted in disruption of the guanylyl cyclase activity of the receptor. We therefore concluded that the dwarf phenotype of cn/cn mouse is caused by a loss-of-function mutation of the Npr2 gene, and cn/cn mouse will be a useful model to further study the molecular mechanism regulating endochondral ossification by CNP/natriuretic peptide receptor B signal.

Original languageEnglish
Pages (from-to)14288-14292
Number of pages5
JournalJournal of Biological Chemistry
Volume280
Issue number14
DOIs
Publication statusPublished - Apr 8 2005

Fingerprint

Dwarfism
Natriuretic Peptides
Peptide Receptors
C-Type Natriuretic Peptide
Genes
Mutation
Guanylate Cyclase
Osteogenesis
Guanylate Cyclase-Coupled Receptors
Phenotype
Recessive Genes
Chondrogenesis
Chromosomes, Human, Pair 4
Chromosomes
COS Cells
Bone Development
Missense Mutation
Amino Acid Substitution
Chondrocytes
Bone

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{4cf63be7c7684f2d936b545131f87c15,
title = "A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse",
abstract = "The achondroplastic mouse is a spontaneous mutant characterized by disproportionate dwarfism with short limbs and tail due to disturbed chondrogenesis during endochondral ossification. These abnormal phenotypes are controlled by an autosomal recessive gene (cn). In this study, linkage analysis using 115 affected mice of F2 progeny mapped the cn locus on an ∼0.8-cM region of chromosome 4, and natriuretic peptide receptor 2 (Npr2) gene was identified as the most potent candidate for the cn mutant in this region. This gene encodes a receptor for C-type natriuretic peptide (CNP) that positively regulates longitudinal bone growth by producing cGMP in response to CNP binding to the extracellular domain. Sequence analyses of the Npr2 gene in cn/cn mice revealed a T to G transversion leading to the amino acid substitution of highly conserved Leu with Arg in the guanylyl cyclase domain. In cultured chondrocytes of cn/cn mice, stimulus with CNP did not significantly increase intracellular cGMP concentration, whereas it increased in +/+ mice. Transfection of the mutant Npr2 gene into COS-7 cells also showed similar results, indicating that the missense mutation of the Npr2 gene in cn/cn mice resulted in disruption of the guanylyl cyclase activity of the receptor. We therefore concluded that the dwarf phenotype of cn/cn mouse is caused by a loss-of-function mutation of the Npr2 gene, and cn/cn mouse will be a useful model to further study the molecular mechanism regulating endochondral ossification by CNP/natriuretic peptide receptor B signal.",
author = "Takehito Tsuji and Tetsuo Kunieda",
year = "2005",
month = "4",
day = "8",
doi = "10.1074/jbc.C500024200",
language = "English",
volume = "280",
pages = "14288--14292",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "14",

}

TY - JOUR

T1 - A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse

AU - Tsuji, Takehito

AU - Kunieda, Tetsuo

PY - 2005/4/8

Y1 - 2005/4/8

N2 - The achondroplastic mouse is a spontaneous mutant characterized by disproportionate dwarfism with short limbs and tail due to disturbed chondrogenesis during endochondral ossification. These abnormal phenotypes are controlled by an autosomal recessive gene (cn). In this study, linkage analysis using 115 affected mice of F2 progeny mapped the cn locus on an ∼0.8-cM region of chromosome 4, and natriuretic peptide receptor 2 (Npr2) gene was identified as the most potent candidate for the cn mutant in this region. This gene encodes a receptor for C-type natriuretic peptide (CNP) that positively regulates longitudinal bone growth by producing cGMP in response to CNP binding to the extracellular domain. Sequence analyses of the Npr2 gene in cn/cn mice revealed a T to G transversion leading to the amino acid substitution of highly conserved Leu with Arg in the guanylyl cyclase domain. In cultured chondrocytes of cn/cn mice, stimulus with CNP did not significantly increase intracellular cGMP concentration, whereas it increased in +/+ mice. Transfection of the mutant Npr2 gene into COS-7 cells also showed similar results, indicating that the missense mutation of the Npr2 gene in cn/cn mice resulted in disruption of the guanylyl cyclase activity of the receptor. We therefore concluded that the dwarf phenotype of cn/cn mouse is caused by a loss-of-function mutation of the Npr2 gene, and cn/cn mouse will be a useful model to further study the molecular mechanism regulating endochondral ossification by CNP/natriuretic peptide receptor B signal.

AB - The achondroplastic mouse is a spontaneous mutant characterized by disproportionate dwarfism with short limbs and tail due to disturbed chondrogenesis during endochondral ossification. These abnormal phenotypes are controlled by an autosomal recessive gene (cn). In this study, linkage analysis using 115 affected mice of F2 progeny mapped the cn locus on an ∼0.8-cM region of chromosome 4, and natriuretic peptide receptor 2 (Npr2) gene was identified as the most potent candidate for the cn mutant in this region. This gene encodes a receptor for C-type natriuretic peptide (CNP) that positively regulates longitudinal bone growth by producing cGMP in response to CNP binding to the extracellular domain. Sequence analyses of the Npr2 gene in cn/cn mice revealed a T to G transversion leading to the amino acid substitution of highly conserved Leu with Arg in the guanylyl cyclase domain. In cultured chondrocytes of cn/cn mice, stimulus with CNP did not significantly increase intracellular cGMP concentration, whereas it increased in +/+ mice. Transfection of the mutant Npr2 gene into COS-7 cells also showed similar results, indicating that the missense mutation of the Npr2 gene in cn/cn mice resulted in disruption of the guanylyl cyclase activity of the receptor. We therefore concluded that the dwarf phenotype of cn/cn mouse is caused by a loss-of-function mutation of the Npr2 gene, and cn/cn mouse will be a useful model to further study the molecular mechanism regulating endochondral ossification by CNP/natriuretic peptide receptor B signal.

UR - http://www.scopus.com/inward/record.url?scp=17144397614&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17144397614&partnerID=8YFLogxK

U2 - 10.1074/jbc.C500024200

DO - 10.1074/jbc.C500024200

M3 - Article

C2 - 15722353

AN - SCOPUS:17144397614

VL - 280

SP - 14288

EP - 14292

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 14

ER -