TY - JOUR
T1 - A Link between Benzyl Isothiocyanate-Induced Cell Cycle Arrest and Apoptosis
T2 - Involvement of Mitogen-Activated Protein Kinases in the Bcl-2 Phosphorylation
AU - Miyoshi, Noriyuki
AU - Uchida, Koji
AU - Osawa, Toshihiko
AU - Nakamura, Yoshimasa
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004/3/15
Y1 - 2004/3/15
N2 - In the present study, we clarified the molecular mechanism underlying the relationship between benzyl isothiocyanate (BITC)-induced cell cycle arrest and apoptosis and the involvement of mitogen-activated protein kinases (MAPKs). The exposure of Jurkat human T-cell leukemia cells to BITC resulted in the inhibition of the G2-M progression that coincided with the apoptosis induction. The experiment using the phase-specific synchronized cells demonstrated that the G2-M phase-arrested cells are more sensitive to undergoing apoptotic stimulation by BITC than the cells in other phases. We also confirmed that BITC activated c-Jun N-terminal kinase (JNK) and p38 MAPK, but not extracellular signal-regulated kinase, at the concentration required for apoptosis induction. An experiment using a JNK-specific inhibitor SP600125 or a p38 MAPK inhibitor SB202190 indicated that BITC-induced apoptosis might be regulated by the activation of these two kinases. Conversely, BITC is likely to confine the Jurkat cells in the G2-M phase mainly through the p38 MAPK pathway because only the p38 MAPK inhibitor significantly attenuated the accumulation of inactive phosphorylated Cdc2 protein and the G 2M-arrested cell numbers. We reported here for the first time that the antiapoptotic Bcl-2 protein was phosphorylated by the BITC treatment without significant alteration of the Bcl-2 total protein amount. This was abrogated by a JNK specific inhibitor SP600125 at the concentration required for specific inhibition of the c-Jun phosphorylation. Moreover, the spontaneous phosphorylation of antiapoptotic Bcl-2 in the G2-M synchronized cells was enhanced synergistically by the BITC treatment. Involvement of the MAPK activation in the Bcl-2 phosphorylation and apoptosis induction also was observed in HL-60 and HeLa cells. Thus, we identified the phosphorylated Bcl-2 as a key molecule linking the p38 MAPK-dependent cell cycle arrest with the JNK activation by BITC.
AB - In the present study, we clarified the molecular mechanism underlying the relationship between benzyl isothiocyanate (BITC)-induced cell cycle arrest and apoptosis and the involvement of mitogen-activated protein kinases (MAPKs). The exposure of Jurkat human T-cell leukemia cells to BITC resulted in the inhibition of the G2-M progression that coincided with the apoptosis induction. The experiment using the phase-specific synchronized cells demonstrated that the G2-M phase-arrested cells are more sensitive to undergoing apoptotic stimulation by BITC than the cells in other phases. We also confirmed that BITC activated c-Jun N-terminal kinase (JNK) and p38 MAPK, but not extracellular signal-regulated kinase, at the concentration required for apoptosis induction. An experiment using a JNK-specific inhibitor SP600125 or a p38 MAPK inhibitor SB202190 indicated that BITC-induced apoptosis might be regulated by the activation of these two kinases. Conversely, BITC is likely to confine the Jurkat cells in the G2-M phase mainly through the p38 MAPK pathway because only the p38 MAPK inhibitor significantly attenuated the accumulation of inactive phosphorylated Cdc2 protein and the G 2M-arrested cell numbers. We reported here for the first time that the antiapoptotic Bcl-2 protein was phosphorylated by the BITC treatment without significant alteration of the Bcl-2 total protein amount. This was abrogated by a JNK specific inhibitor SP600125 at the concentration required for specific inhibition of the c-Jun phosphorylation. Moreover, the spontaneous phosphorylation of antiapoptotic Bcl-2 in the G2-M synchronized cells was enhanced synergistically by the BITC treatment. Involvement of the MAPK activation in the Bcl-2 phosphorylation and apoptosis induction also was observed in HL-60 and HeLa cells. Thus, we identified the phosphorylated Bcl-2 as a key molecule linking the p38 MAPK-dependent cell cycle arrest with the JNK activation by BITC.
UR - http://www.scopus.com/inward/record.url?scp=1542615077&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1542615077&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-03-2296
DO - 10.1158/0008-5472.CAN-03-2296
M3 - Article
C2 - 15026354
AN - SCOPUS:1542615077
VL - 64
SP - 2134
EP - 2142
JO - Cancer Research
JF - Cancer Research
SN - 0008-5472
IS - 6
ER -