TY - JOUR
T1 - A functional null mutation of SCN1B in a patient with Dravet syndrome
AU - Patino, Gustavo A.
AU - Claes, Lieve R.F.
AU - Lopez-Santiago, Luis F.
AU - Slat, Emily A.
AU - Dondeti, Raja S.R.
AU - Chen, Chunling
AU - O'Malley, Heather A.
AU - Gray, Charles B.B.
AU - Miyazaki, Haruko
AU - Nukina, Nobuyuki
AU - Oyama, Fumitaka
AU - De Jonghe, Peter
AU - Isom, Lori L.
PY - 2009/8/26
Y1 - 2009/8/26
N2 - Dravet syndrome (also called severe myoclonic epilepsy of infancy) is one of the most severe forms of childhood epilepsy. Most patients have heterozygous mutations in SCN1A, encoding voltage-gated sodium channel Nav1.1 αsubunits. Sodium channels are modulated by β1 subunits, encoded by SCN1B, a gene also linked to epilepsy. Here we report the first patient with Dravet syndrome associated with a recessive mutation in SCN1B (p.R125C). Biochemical characterization of p.R125C in a heterologous system demonstrated little to no cell surface expression despite normal total cellular expression. This occurred regardless of coexpression of Nav1.1 αsubunits. Because the patient was homozygous for the mutation, these data suggest a functional SCN1B null phenotype. To understand the consequences of the lack of β1 cell surface expression in vivo, hippocampal slice recordings were performed in Scn1b-/-versus Scn1b+/+mice. Scn1b -/-CA3 neurons fired evoked action potentials with a significantly higher peak voltage and significantly greater amplitude compared with wild type. However, in contrast to the Scn1a+/- model of Dravet syndrome, we found no measurable differences in sodium current density in acutely dissociated CA3 hippocampal neurons. Whereas Scn1b-/-mice seize spontaneously, the seizure susceptibility of Scn1b+/-mice was similar to wild type, suggesting that, like the parents of this patient, one functional SCN1B allele is sufficient for normal control of electrical excitability. We conclude that SCN1B p.R125C is an autosomal recessive cause of Dravet syndrome through functional gene inactivation.
AB - Dravet syndrome (also called severe myoclonic epilepsy of infancy) is one of the most severe forms of childhood epilepsy. Most patients have heterozygous mutations in SCN1A, encoding voltage-gated sodium channel Nav1.1 αsubunits. Sodium channels are modulated by β1 subunits, encoded by SCN1B, a gene also linked to epilepsy. Here we report the first patient with Dravet syndrome associated with a recessive mutation in SCN1B (p.R125C). Biochemical characterization of p.R125C in a heterologous system demonstrated little to no cell surface expression despite normal total cellular expression. This occurred regardless of coexpression of Nav1.1 αsubunits. Because the patient was homozygous for the mutation, these data suggest a functional SCN1B null phenotype. To understand the consequences of the lack of β1 cell surface expression in vivo, hippocampal slice recordings were performed in Scn1b-/-versus Scn1b+/+mice. Scn1b -/-CA3 neurons fired evoked action potentials with a significantly higher peak voltage and significantly greater amplitude compared with wild type. However, in contrast to the Scn1a+/- model of Dravet syndrome, we found no measurable differences in sodium current density in acutely dissociated CA3 hippocampal neurons. Whereas Scn1b-/-mice seize spontaneously, the seizure susceptibility of Scn1b+/-mice was similar to wild type, suggesting that, like the parents of this patient, one functional SCN1B allele is sufficient for normal control of electrical excitability. We conclude that SCN1B p.R125C is an autosomal recessive cause of Dravet syndrome through functional gene inactivation.
UR - http://www.scopus.com/inward/record.url?scp=69449089315&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=69449089315&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.2475-09.2009
DO - 10.1523/JNEUROSCI.2475-09.2009
M3 - Article
C2 - 19710327
AN - SCOPUS:69449089315
SN - 0270-6474
VL - 29
SP - 10764
EP - 10778
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 34
ER -