Abstract
With the accumulation of data on complex molecular machineries coordinating cell-cycle dynamics, coupled with its central function in disease patho-physiologies, it is becoming increasingly important to collate the disparate knowledge sources into a comprehensive molecular network amenable to systems-level analyses. In this work, we present a comprehensive map of the budding yeast cell-cycle, curating reactions from ∼600 original papers. Toward leveraging the map as a framework to explore the underlying network architecture, we abstract the molecular components into three planes-signaling, cell-cycle core and structural planes. The planar view together with topological analyses facilitates network-centric identification of functions and control mechanisms. Further, we perform a comparative motif analysis to identify around 194 motifs including feed-forward, mutual inhibitory and feedback mechanisms contributing to cell-cycle robustness. We envisage the open access, comprehensive cell-cycle map to open roads toward community-based deeper understanding of cell-cycle dynamics.
Original language | English |
---|---|
Article number | 415 |
Journal | Molecular Systems Biology |
Volume | 6 |
DOIs | |
Publication status | Published - 2010 |
Keywords
- comprehensive map
- large-scale network
- yeast cell cycle
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
- Agricultural and Biological Sciences(all)
- Applied Mathematics