TY - JOUR
T1 - γ-glutamyl transpeptidase of spermatozoa may decrease oocyte glutathione content at fertilization in pigs
AU - Funahashi, Hiroaki
AU - Machaty, Zoltan
AU - Prather, Randall S.
AU - Day, Billy N.
PY - 1996/12/1
Y1 - 1996/12/1
N2 - The presence of γ-glutamyl transpeptidase (GGT) in boar spermatozoa and the potential role of the GGT at sperm penetration were examined using in vitro matured porcine oocytes. In the first experiment, GGT of boar spermatozoa was examined using a histochemical stain. GGT was detected in the midpiece and the acrosome regions of boar spermatozoa. In the second experiment, porcine oocytes matured in vitro were injected with approximately 40 pl of 10 mM HEPES solution alone or HEPES containing 0.5 U/ml GGT or 1 mM guanosine 5'-O-(3'-thiotriphosphate) (GTP-γ-S; G-protein activator). When GGT was injected into oocytes, the incidence of oocytes activated (23.7 ± 1.4%) was not different (P > 0.05) from HEPES-injected controls (24.9 ± 1.3%) at 6 h after injection. Injected GTP-γ-S, however, activated 76.0 ± 5.3% of oocytes at 6 h after injection, but extrusion of the second polar body was very low (2.8 ± 4.8%). Total content of glutathione (GSH) and glutathione disulfide (GSSG) did not differ (P > 0.05) between GTP-γ-S injected oocytes (4.2 ± 0.7 pmol/oocyte) and noninjected oocytes (4.0 ± 0.1 pmol/oocyte) at 6 h after injection. However, the total content of GSH and GSSG was lower (P < 0.01) in GGT-injected oocytes (2.1 ± 0.2 pmol/oocyte) than HEPES-injected oocytes (3.4 ± 0.2 pmol/oocyte) at 6 h after injection. In the third experiment, in vitro matured porcine oocytes were injected with about 40 pl of 10 mM HEPES solution alone or HEPES containing 0.5 U/ml GGT and then inseminated. At 12 h after insemination, the incidence of male pronuclear formation was significantly lower in oocytes injected with GGT as compared with injected control oocytes. These results demonstrated that (1) GGT was present on the surface of spermatozoa, (2) total oocyte content of GSH and GSSG was decreased by microinjection of GGT but not by that of GTP- γ-S, and (3) male pronuclear formation was inhibited in GGT-injected oocytes. These results suggest that sperm GGT may be a limiting factor for male pronuclear formation in polyspermic oocytes.
AB - The presence of γ-glutamyl transpeptidase (GGT) in boar spermatozoa and the potential role of the GGT at sperm penetration were examined using in vitro matured porcine oocytes. In the first experiment, GGT of boar spermatozoa was examined using a histochemical stain. GGT was detected in the midpiece and the acrosome regions of boar spermatozoa. In the second experiment, porcine oocytes matured in vitro were injected with approximately 40 pl of 10 mM HEPES solution alone or HEPES containing 0.5 U/ml GGT or 1 mM guanosine 5'-O-(3'-thiotriphosphate) (GTP-γ-S; G-protein activator). When GGT was injected into oocytes, the incidence of oocytes activated (23.7 ± 1.4%) was not different (P > 0.05) from HEPES-injected controls (24.9 ± 1.3%) at 6 h after injection. Injected GTP-γ-S, however, activated 76.0 ± 5.3% of oocytes at 6 h after injection, but extrusion of the second polar body was very low (2.8 ± 4.8%). Total content of glutathione (GSH) and glutathione disulfide (GSSG) did not differ (P > 0.05) between GTP-γ-S injected oocytes (4.2 ± 0.7 pmol/oocyte) and noninjected oocytes (4.0 ± 0.1 pmol/oocyte) at 6 h after injection. However, the total content of GSH and GSSG was lower (P < 0.01) in GGT-injected oocytes (2.1 ± 0.2 pmol/oocyte) than HEPES-injected oocytes (3.4 ± 0.2 pmol/oocyte) at 6 h after injection. In the third experiment, in vitro matured porcine oocytes were injected with about 40 pl of 10 mM HEPES solution alone or HEPES containing 0.5 U/ml GGT and then inseminated. At 12 h after insemination, the incidence of male pronuclear formation was significantly lower in oocytes injected with GGT as compared with injected control oocytes. These results demonstrated that (1) GGT was present on the surface of spermatozoa, (2) total oocyte content of GSH and GSSG was decreased by microinjection of GGT but not by that of GTP- γ-S, and (3) male pronuclear formation was inhibited in GGT-injected oocytes. These results suggest that sperm GGT may be a limiting factor for male pronuclear formation in polyspermic oocytes.
KW - glutathione
KW - male pronuclear formation
KW - oocytes
KW - pig
KW - γ-Glutamyl transpeptidase
UR - http://www.scopus.com/inward/record.url?scp=0029857268&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029857268&partnerID=8YFLogxK
U2 - 10.1002/(SICI)1098-2795(199612)45:4<485::AID-MRD11>3.0.CO;2-W
DO - 10.1002/(SICI)1098-2795(199612)45:4<485::AID-MRD11>3.0.CO;2-W
M3 - Article
C2 - 8956287
AN - SCOPUS:0029857268
VL - 45
SP - 485
EP - 490
JO - Gamete Research
JF - Gamete Research
SN - 1040-452X
IS - 4
ER -