Research Output per year

## Fingerprint Fingerprint is based on mining the text of the person's scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

Infinitely Divisible Distribution
Mathematics

Stochastic Integral
Mathematics

Riemann zeta function
Mathematics

Integral Representation
Mathematics

Euler Product
Mathematics

Probability Distribution
Mathematics

Multinomial Distribution
Mathematics

Infinitely Divisible
Mathematics

##
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.

## Research Output 2007 2015

- 40 Citations
- 4 h-Index
- 7 Article

## Multinomial distributions in Shintani zeta class

Aoyama, T. & Yoshikawa, K., 2015, In : Japan Journal of Industrial and Applied Mathematics. 32, 1, p. 33-50 18 p.Research output: Contribution to journal › Article

Multinomial Distribution

Riemann zeta function

Discrete Distributions

Probability distributions

Probability Distribution

## Behaviors of multivariable finite Euler products in probabilistic view

Aoyama, T. & Nakamura, T., Dec 2013, In : Mathematische Nachrichten. 286, 17-18, p. 1691-1700 10 p.Research output: Contribution to journal › Article

Euler Product

Infinitely Divisible

Characteristic Function

Riemann zeta function

Number theory

## Multidimensional Shintani zeta functions and zeta distributions on R ^{d}

Aoyama, T. & Nakamura, T., Dec 2013, In : Tokyo Journal of Mathematics. 36, 2, p. 521-538 18 p.Research output: Contribution to journal › Article

Riemann zeta function

Probability Distribution

Euler Product

Infinitely Divisible Distribution

Binomial distribution

## Several forms of stochastic integral representations of gamma random variables and related topics

Aoyama, T., Maejima, M. & Ueda, Y., 2011, In : Probability and Mathematical Statistics. 31, 1, p. 99-118 20 p.Research output: Contribution to journal › Article

Infinitely Divisible Distribution

Stochastic Integral

Integral Representation

Gamma distribution

Integrand

## A new family of mappings of infinitely divisible distributions related to the Goldie-Steutel-Bondesson class

Aoyama, T., Lindner, A. & Maejima, M., 2010, In : Electronic Journal of Probability. 15, p. 1119-1142 24 p.Research output: Contribution to journal › Article

Infinitely Divisible Distribution

Stochastic Integral

Range of data

Compound Poisson Process

Lévy Process