Research Output per year

## Fingerprint Dive into the research topics where Takahiro Aoyama is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

Infinitely Divisible Distribution
Mathematics

Stochastic Integral
Mathematics

Riemann zeta function
Mathematics

Integral Representation
Mathematics

Euler Product
Mathematics

Probability Distribution
Mathematics

Multinomial Distribution
Mathematics

Infinitely Divisible
Mathematics

##
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.

## Research Output 2007 2015

- 41 Citations
- 4 h-Index
- 6 Article

## Multinomial distributions in Shintani zeta class

Aoyama, T. & Yoshikawa, K., 2015, In : Japan Journal of Industrial and Applied Mathematics. 32, 1, p. 33-50 18 p.Research output: Contribution to journal › Article

Multinomial Distribution

Riemann zeta function

Discrete Distributions

Probability Distribution

Probability distributions

3
Citations
(Scopus)

## Behaviors of multivariable finite Euler products in probabilistic view

Aoyama, T. & Nakamura, T., Dec 2013, In : Mathematische Nachrichten. 286, 17-18, p. 1691-1700 10 p.Research output: Contribution to journal › Article

Euler Product

Infinitely Divisible

Characteristic Function

Riemann zeta function

Number theory

3
Citations
(Scopus)

## Multidimensional Shintani zeta functions and zeta distributions on R ^{d}

Aoyama, T. & Nakamura, T., Dec 2013, In : Tokyo Journal of Mathematics. 36, 2, p. 521-538 18 p.Research output: Contribution to journal › Article

Riemann zeta function

Probability Distribution

Euler Product

Infinitely Divisible Distribution

Binomial distribution

## Several forms of stochastic integral representations of gamma random variables and related topics

Aoyama, T., Maejima, M. & Ueda, Y., 2011, In : Probability and Mathematical Statistics. 31, 1, p. 99-118 20 p.Research output: Contribution to journal › Article

Infinitely Divisible Distribution

Stochastic Integral

Integral Representation

Gamma distribution

Integrand

## A new family of mappings of infinitely divisible distributions related to the Goldie-Steutel-Bondesson class

Aoyama, T., Lindner, A. & Maejima, M., 2010, In : Electronic Journal of Probability. 15, p. 1119-1142 24 p.Research output: Contribution to journal › Article

Infinitely Divisible Distribution

Stochastic Integral

Range of data

Compound Poisson Process

Exponential distribution